Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.538
Filtrar
1.
Sci Rep ; 14(1): 8424, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600209

RESUMO

Using deep learning has demonstrated significant potential in making informed decisions based on clinical evidence. In this study, we deal with optimizing medication and quantitatively present the role of deep learning in predicting the medication dosage for patients with Parkinson's disease (PD). The proposed method is based on recurrent neural networks (RNNs) and tries to predict the dosage of five critical medication types for PD, including levodopa, dopamine agonists, monoamine oxidase-B inhibitors, catechol-O-methyltransferase inhibitors, and amantadine. Recurrent neural networks have memory blocks that retain crucial information from previous patient visits. This feature is helpful for patients with PD, as the neurologist can refer to the patient's previous state and the prescribed medication to make informed decisions. We employed data from the Parkinson's Progression Markers Initiative. The dataset included information on the Unified Parkinson's Disease Rating Scale, Activities of Daily Living, Hoehn and Yahr scale, demographic details, and medication use logs for each patient. We evaluated several models, such as multi-layer perceptron (MLP), Simple-RNN, long short-term memory (LSTM), and gated recurrent units (GRU). Our analysis found that recurrent neural networks (LSTM and GRU) performed the best. More specifically, when using LSTM, we were able to predict levodopa and dopamine agonist dosage with a mean squared error of 0.009 and 0.003, mean absolute error of 0.062 and 0.030, root mean square error of 0.099 and 0.053, and R-squared of 0.514 and 0.711, respectively.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Levodopa/uso terapêutico , Catecol O-Metiltransferase , Atividades Cotidianas , Agonistas de Dopamina/uso terapêutico , Redes Neurais de Computação
2.
CNS Drugs ; 38(5): 315-331, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570412

RESUMO

The concept of a 'microbiota-gut-brain axis' has recently emerged as an important player in the pathophysiology of Parkinson disease (PD), not least because of the reciprocal interaction between gut bacteria and medications. The gut microbiota can influence levodopa kinetics, and conversely, drugs administered for PD can influence gut microbiota composition. Through a two-step enzymatic pathway, gut microbes can decarboxylate levodopa to dopamine in the small intestine and then dehydroxylate it to m-tyramine, thus reducing availability. Inhibition of bacterial decarboxylation pathways could therefore represent a strategy to increase levodopa absorption. Other bacterial perturbations common in PD, such as small intestinal bacterial overgrowth and Helicobacter pylori infection, can also modulate levodopa metabolism, and eradication therapies may improve levodopa absorption. Interventions targeting the gut microbiota offer a novel opportunity to manage disabling motor complications and dopa-unresponsive symptoms. Mediterranean diet-induced changes in gut microbiota composition might improve a range of non-motor symptoms. Prebiotics can increase levels of short-chain fatty acid-producing bacteria and decrease pro-inflammatory species, with positive effects on clinical symptoms and levodopa kinetics. Different formulations of probiotics showed beneficial outcomes on constipation, with some of them improving dopamine levels; however, the most effective dosage and duration and long-term effects of these treatments remain unknown. Data from faecal microbiota transplantation studies are preliminary, but show encouraging trends towards improvement in both motor and non-motor outcomes.This article summarises the most up-to-date knowledge in pharmacomicrobiomics in PD, and discusses how the manipulation of gut microbiota represents a potential new therapeutic avenue for PD.


Assuntos
Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Microbioma Gastrointestinal/fisiologia , Levodopa/farmacologia , Dopamina
3.
Pharmacol Res Perspect ; 12(2): e1190, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38597598

RESUMO

Analysis was conducted to compare levodopa/carbidopa pharmacokinetics and drug-related material in plasma of healthy participants after receiving a continuous infusion of Levodopa/Carbidopa Intestinal Gel (LCIG) to a continuous subcutaneous infusion of foslevodopa/foscarbidopa. Study samples were from a randomized, open-label, 2-period crossover study in 20 healthy participants. Participants received either 24-h foslevodopa/foscarbidopa SC infusion to the abdomen or LCIG delivered for 24 h to the jejunum through a nasogastric tube with jejunal extension. Serial blood samples were collected for PK. Comparability of the LD PK parameters between the two treatment regimens was determined. Selected plasma samples were pooled per treatment group and per time point for metabolite profiling. LC-MSn was performed using high-resolution mass spectrometry to identify drug-related material across the dosing regimens and time points. The LD PK parameter central values and 90% confidence intervals following the foslevodopa/foscarbidopa subcutaneous infusion were between 0.8 and 1.25 relative to the LCIG infusion. With LCIG administration, LD, CD, 3-OMD, DHPA, DOPAC, and vanillacetic acid were identified in plasma at early and late time points (0.75 and 24 h); the metabolic profile after administration of foslevodopa/foscarbidopa demonstrated the same drug-related compounds with the exception of the administered foslevodopa. 3-OMD and vanillacetic acid levels increased over time in both treatment regimens. Relative quantification of LC-MS peak areas showed no major differences in the metabolite profiles. These results indicate that neither the addition of monophosphate prodrug moieties nor SC administration affects the circulating metabolite profile of foslevodopa/foscarbidopa compared to LCIG.


Assuntos
Carbidopa , Doença de Parkinson , Humanos , Carbidopa/farmacocinética , Levodopa/farmacocinética , Antiparkinsonianos/farmacocinética , Estudos Cross-Over , Voluntários Saudáveis , Doença de Parkinson/tratamento farmacológico , Géis/uso terapêutico , Agonistas de Dopamina
4.
J Neurol Sci ; 459: 122983, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574438

RESUMO

Acute midbrain injury may cause both hyperkinetic movement disorders and parkinsonism. The temporal interval between the insult and the emergence of hyperkinetic disorders can last years. A delayed appearance of parkinsonism, on the other hand, was rarely described. We present three cases of male patients (50-, 58- and 28-year-old) who developed levodopa-responsive parkinsonism 20, 8 and two years, respectively, after acute brain insult involving the midbrain. Insults included subcortical intracerebral hemorrhage dissecting into the midbrain, embolic basilar occlusion and trauma. A fluorodopa scan, performed in two cases, revealed reduced striatal uptake. All individuals improved on low doses of levodopa and developed motor fluctuations shortly after levodopa was introduced. We conclude that delayed, levodopa-responsive parkinsonism following midbrain injury should be recognized in the relevant clinical setup. Possible mechanisms include age-related loss of dopaminergic neurons superimposed on acute injury and secondary neurodegeneration.


Assuntos
Levodopa , Transtornos Parkinsonianos , Humanos , Masculino , Levodopa/efeitos adversos , Transtornos Parkinsonianos/complicações , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/tratamento farmacológico , Encéfalo , Mesencéfalo/diagnóstico por imagem , Corpo Estriado
5.
Neurologia (Engl Ed) ; 39(4): 340-344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38616061

RESUMO

BACKGROUND AND PURPOSE: The aim of this study was to assess the possible pharmacological interactions between safinamide and antidepressants, and in particular the appearance of serotonin syndrome with data from real life. METHODS: We conducted a retrospective observational study of patients with Parkinson's disease from our Movement Disorders Unit, who were under treatment with any antidepressant drug and safinamide. Specifically, symptoms suggestive of serotonin syndrome were screened for. Also, we collected time of simultaneous use, doses of levodopa and other antiparkinsonian drugs. RESULTS: Clinical records were reviewed for the study period of September 2018 to September 2019. Seventy-eight PD patients who were treated with safinamide of which 25 (32.05%) had a concomitant treatment with an antidepressant drug, being sertraline and escitalopram the most frequent. Mean age was 80 years±8.43 and H&Y stage was 3 [2-4]. Mean dose of levodopa used was 703.75mg±233.15. Median duration of concomitant treatment with safinamide and antidepressant drug was 6 months (IQR 20.5), and over eighteen months in 5 cases. No case of serotonin syndrome was recorded, neither was any of its typical manifestations combined or in isolation. CONCLUSIONS: Our real clinical practice study suggests that concomitant use of safinamide with antidepressant drugs in PD patients seemed to be safe and well tolerated, even in the long term. However, caution is warranted, individualizing treatment regimens and monitoring the potential appearance of adverse effects.


Assuntos
Alanina/análogos & derivados , Benzilaminas , Doença de Parkinson , Síndrome da Serotonina , Humanos , Idoso de 80 Anos ou mais , Levodopa/efeitos adversos , Antidepressivos/efeitos adversos , Doença de Parkinson/tratamento farmacológico
6.
BMC Neurol ; 24(1): 106, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561682

RESUMO

BACKGROUND: A ketogenic diet (KD) may benefit people with neurodegenerative disorders marked by mitochondrial depolarization/insufficiency, including Parkinson's disease (PD). OBJECTIVE: Evaluate whether a KD supplemented by medium chain triglyceride (MCT-KD) oil is feasible and acceptable for PD patients. Furthermore, we explored the effects of MCT-KD on blood ketone levels, metabolic parameters, levodopa absorption, mobility, nonmotor symptoms, simple motor and cognitive tests, autonomic function, and resting-state electroencephalography (rsEEG). METHODS: A one-week in-hospital, double-blind, randomized, placebo-controlled diet (MCT-KD vs. standard diet (SD)), followed by an at-home two-week open-label extension. The primary outcome was KD feasibility and acceptability. The secondary outcome was the change in Timed Up & Go (TUG) on day 7 of the diet intervention. Additional exploratory outcomes included the N-Back task, Unified Parkinson's Disease Rating Scale, Non-Motor Symptom Scale, and rsEEG connectivity. RESULTS: A total of 15/16 subjects completed the study. The mean acceptability was 2.3/3, indicating willingness to continue the KD. Day 7 TUG time was not significantly different between the SD and KD groups. The nonmotor symptom severity score was reduced at the week 3 visit and to a greater extent in the KD group. UPDRS, 3-back, and rsEEG measures were not significantly different between groups. Blood ketosis was attained by day 4 in the KD group and to a greater extent at week 3 than in the SD group. The plasma levodopa metabolites DOPAC and dopamine both showed nonsignificant increasing trends over 3 days in the KD vs. SD groups. CONCLUSIONS: An MCT-supplemented KD is feasible and acceptable to PD patients but requires further study to understand its effects on symptoms and disease. TRIAL REGISTRATION: Trial Registration Number NCT04584346, registration dates were Oct 14, 2020 - Sept 13, 2022.


Assuntos
Dieta Cetogênica , Doença de Parkinson , Humanos , Estudos de Viabilidade , Levodopa , Triglicerídeos , Método Duplo-Cego
7.
J Int Med Res ; 52(3): 3000605241233159, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38436278

RESUMO

Neuronal intranuclear inclusion disease (NIID) is a rare progressive neurodegenerative disease that mainly manifests as dementia, muscle weakness, sensory disturbances, and autonomic nervous dysfunction. Herein, we report a 68-year-old Chinese woman who was hospitalized because of resting tremor and bradykinesia that had been present for 7 years. Five years prior, bradykinesia and hypermyotonia had become apparent. She had urinary incontinence and rapid eye movement sleep behavior disorder. She was diagnosed with Parkinson's disease (PD) and received levodopa and pramipexole, which relieved her motor symptoms. During hospitalization, diffusion-weighted imaging revealed a high-intensity signal along the cortical medullary junction. Moreover, a skin biopsy revealed the presence of intranuclear inclusions in adipocytes, fibroblasts, and sweat gland cells. NIID was diagnosed by testing the Notch 2 N-terminal-like C (NOTCH2NLC) gene. We report this case to remind doctors to consider NIID when diagnosing patients with symptoms indicative of Parkinson's disease. Moreover, we note that further research is needed on the mechanism by which levodopa is effective for NIID.


Assuntos
Doenças do Sistema Nervoso Autônomo , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Feminino , Idoso , Doenças Neurodegenerativas/diagnóstico , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Corpos de Inclusão Intranuclear , Levodopa/uso terapêutico , Hipocinesia , Erros de Diagnóstico
8.
Carbohydr Polym ; 332: 121909, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431413

RESUMO

COMT inhibitors are commonly used to improve the effectiveness of levodopa in treating Parkinson's disease by inhibiting its conversion to 3-O-methyldopa. Because of the serious side effect of nitrocatechol COMT inhibitors, it is necessary to develop non-nitrocatechol COMT inhibitors with a higher safety profile. Heparin has been observed to bind to COMT. However, the exact functional significance of this interaction is not fully understood. In this study, the contribution of different substitution of heparin to its binding with COMT was investigated. In vitro and in vivo, heparin oligosaccharides can bind to COMT and inhibit its activity. Furthermore, we enriched the functional heparin oligosaccharides that bind to COMT and identified the sequence UA2S-GlcN(S/Ac)6(S/H)-UA2S-GlcNS6(S/H)-UA2(S/H)-GlcNS6S as the characteristic structural domain of these functional oligosaccharides. This study has elucidated the relationship between the structure of heparin oligosaccharides and their activity against COMT, providing valuable insights for the development of non-nitrocatechol COMT inhibitors with improved safety and efficacy.


Assuntos
Catecol O-Metiltransferase , Doença de Parkinson , Humanos , Catecol O-Metiltransferase/metabolismo , Catecol O-Metiltransferase/uso terapêutico , Heparina/uso terapêutico , Inibidores de Catecol O-Metiltransferase/farmacologia , Inibidores de Catecol O-Metiltransferase/uso terapêutico , Levodopa , Doença de Parkinson/tratamento farmacológico
9.
Mol Med ; 30(1): 33, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429661

RESUMO

BACKGROUND: Loss of dopaminergic neurons underlies the motor symptoms of Parkinson's disease (PD). However stereotypical PD symptoms only manifest after approximately 80% of dopamine neurons have died making dopamine-related motor phenotypes unreliable markers of the earlier stages of the disease. There are other non-motor symptoms, such as depression, that may present decades before motor symptoms. METHODS: Because serotonin is implicated in depression, here we use niche, fast electrochemistry paired with mathematical modelling and machine learning to, for the first time, robustly evaluate serotonin neurochemistry in vivo in real time in a toxicological model of Parkinsonism, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). RESULTS: Mice treated with acute MPTP had lower concentrations of in vivo, evoked and ambient serotonin in the hippocampus, consistent with the clinical comorbidity of depression with PD. These mice did not chemically respond to SSRI, as strongly as control animals did, following the clinical literature showing that antidepressant success during PD is highly variable. Following L-DOPA administration, using a novel machine learning analysis tool, we observed a dynamic shift from evoked serotonin release in the hippocampus to dopamine release. We hypothesize that this finding shows, in real time, that serotonergic neurons uptake L-DOPA and produce dopamine at the expense of serotonin, supporting the significant clinical correlation between L-DOPA and depression. Finally, we found that this post L-DOPA dopamine release was less regulated, staying in the synapse for longer. This finding is perhaps due to lack of autoreceptor control and may provide a ground from which to study L-DOPA induced dyskinesia. CONCLUSIONS: These results validate key prior hypotheses about the roles of serotonin during PD and open an avenue to study to potentially improve therapeutics for levodopa-induced dyskinesia and depression.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Transtornos Parkinsonianos , Camundongos , Animais , Levodopa/efeitos adversos , Dopamina , Serotonina , Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/etiologia , Doença de Parkinson/etiologia , Doença de Parkinson/tratamento farmacológico , Biomarcadores
10.
Adv Neurobiol ; 36: 571-583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468054

RESUMO

Self-similar stochastic processes and broad probability distributions are ubiquitous in nature and in many man-made systems. The brain is a particularly interesting example of (natural) complex system where those features play a pivotal role. In fact, the controversial yet experimentally validated "criticality hypothesis" explaining the functioning of the brain implies the presence of scaling laws for correlations. Recently, we have analyzed a collection of rest tremor velocity signals recorded from patients affected by Parkinson's disease, with the aim of determining and hence exploiting the presence of scaling laws. Our results show that multiple scaling laws are required in order to describe the dynamics of such signals, stressing the complexity of the underlying generating mechanism. We successively extracted numeric features by using the multifractal detrended fluctuation analysis procedure. We found that such features can be effective for discriminating classes of signals recorded in different experimental conditions. Notably, we show that the use of medication (L-DOPA) can be recognized with high accuracy.


Assuntos
Doença de Parkinson , Tremor , Humanos , Levodopa/uso terapêutico , Encéfalo
11.
CNS Neurosci Ther ; 30(3): e14575, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38467597

RESUMO

BACKGROUND: Levodopa could induce orthostatic hypotension (OH) in Parkinson's disease (PD) patients. Accurate prediction of acute OH post levodopa (AOHPL) is important for rational drug use in PD patients. Here, we develop and validate a prediction model of AOHPL to facilitate physicians in identifying patients at higher probability of developing AOHPL. METHODS: The study involved 497 PD inpatients who underwent a levodopa challenge test (LCT) and the supine-to-standing test (STS) four times during LCT. Patients were divided into two groups based on whether OH occurred during levodopa effectiveness (AOHPL) or not (non-AOHPL). The dataset was randomly split into training (80%) and independent test data (20%). Several models were trained and compared for discrimination between AOHPL and non-AOHPL. Final model was evaluated on independent test data. Shapley additive explanations (SHAP) values were employed to reveal how variables explain specific predictions for given observations in the independent test data. RESULTS: We included 180 PD patients without AOHPL and 194 PD patients with AOHPL to develop and validate predictive models. Random Forest was selected as our final model as its leave-one-out cross validation performance [AUC_ROC 0.776, accuracy 73.6%, sensitivity 71.6%, specificity 75.7%] outperformed other models. The most crucial features in this predictive model were the maximal SBP drop and DBP drop of STS before medication (ΔSBP/ΔDBP). We achieved a prediction accuracy of 72% on independent test data. ΔSBP, ΔDBP, and standing mean artery pressure were the top three variables that contributed most to the predictions across all individual observations in the independent test data. CONCLUSIONS: The validated classifier could serve as a valuable tool for clinicians, offering the probability of a patient developing AOHPL at an early stage. This supports clinical decision-making, potentially enhancing the quality of life for PD patients.


Assuntos
Hipotensão Ortostática , Doença de Parkinson , Humanos , Levodopa/efeitos adversos , Hipotensão Ortostática/induzido quimicamente , Hipotensão Ortostática/diagnóstico , Qualidade de Vida , Pressão Sanguínea , Doença de Parkinson/tratamento farmacológico
13.
Lancet Neurol ; 23(5): 465-476, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499015

RESUMO

BACKGROUND: Conventional oral levodopa therapy for the treatment of Parkinson's disease can be associated with variations in plasma concentrations. Levodopa infusion strategies might provide more consistent drug delivery and fewer motor fluctuations. We aimed to assess the safety and efficacy of a continuous 24 h/day subcutaneous infusion of ND0612 (a levodopa-carbidopa solution) compared with oral immediate-release levodopa-carbidopa for the treatment of motor fluctuations in people with Parkinson's disease. METHODS: We conducted a phase 3, randomised, double-blind, double-dummy, active-controlled, multicentre trial at 117 academic and community neurology sites in 16 countries, including in Europe, Israel, and the USA. Eligible participants were men and women aged 30 years or older with a diagnosis of Parkinson's disease (Hoehn and Yahr stage ≤3 in the on state) who experienced at least 2·5 h/day of off time. Participants underwent an open-label run-in phase (<12 weeks), during which time optimal regimens were established for both oral immediate-release levodopa-carbidopa and for 24 h/day subcutaneous ND0612 infusion (levodopa-carbidopa 60·0/7·5 mg/mL), with supplemental oral levodopa-carbidopa if needed. Participants were then randomly assigned (1:1) to 12 weeks of double-blind treatment with their optimised regimen of either subcutaneous ND0612 or oral levodopa-carbidopa, with matching oral or subcutaneous placebo given as required to maintain blinding. Randomisation was done via an interactive web response system, stratified by region, using a permuted block schedule. Participants, study partners, treating investigators, study site personnel, and the sponsor were masked to treatment group allocation. The primary efficacy endpoint was the change from baseline (ie, time of randomisation, when all patients were receiving an optimised open-label ND0612 regimen) to end of the double-blind phase in total daily on time without troublesome dyskinesia, analysed by intention to treat. This trial is registered with ClinicalTrials.gov, NCT04006210, and is complete. FINDINGS: Between Sept 30, 2019, and April 8, 2022, 381 participants were enrolled, of whom 259 (68%) were randomly assigned, 128 (49%) to subcutaneous ND0612 and 131 (51%) to oral levodopa-carbidopa. 243 (94%) participants completed the study. Treatment with subcutaneous ND0612 provided an additional 1·72 h (95% CI 1·08 to 2·36) of on time without troublesome dyskinesia compared with oral levodopa-carbidopa (change from baseline of -0·48 h [-0·94 to -0·02] with subcutaneous ND0612 vs -2·20 h [-2·65 to -1·74] with oral levodopa-carbidopa; p<0·0001). Significant treatment differences favouring subcutaneous ND0612 were also found in the first four of nine prespecified hierarchical outcomes of daily off time (-1·40 h [95% CI -1·99 to -0·80]), Movement Disorders Society-Unified Parkinson's Disease Rating Scale part II scores (-3·05 [-4·28 to -1·81]), Patients Global Impression of Change (odds ratio [OR] 5·31 [2·67 to 10·58]), and Clinical Global Impression of Improvement (OR 7·23 [3·57 to 14·64]). Hierarchical testing ended after the fourth secondary endpoint. Adverse events were reported by 287 (89%) of 322 participants during open-label ND0612 optimisation, and by 103 (80%) of 128 in the ND0612 group and 97 (74%) of 131 in the oral levodopa-carbidopa group during the double-blind phase. The most common adverse events were infusion-site reactions (266 [83%] participants during open-label ND0612, and 73 [57%] in the ND0612 group vs 56 [43%] in the oral levodopa-carbidopa group during the double-blind phase), most of which were mild. Serious adverse events in four participants in the ND0612 group were related to study treatment (infusion-site cellulitis [n=2], infusion-site abscess and infusion-site ulcer [n=1]; and paraesthesia and peripheral sensorimotor neuropathy [n=1]). One participant in the ND0612 group died during the double-blind phase, but the death was not related to study treatment (fall leading to traumatic brain injury). INTERPRETATION: Results of this phase 3 study showed that subcutaneous ND0612 used in combination with oral immediate-release levodopa-carbidopa increased on time without troublesome dyskinesia and reduced off time, with a favourable benefit-risk profile. ND0612 might offer a safe and efficacious subcutaneous levodopa infusion approach to managing motor fluctuations in people with Parkinson's disease. The ongoing open-label extension phase will provide further information on the long-term efficacy and safety of treatment. FUNDING: NeuroDerm.


Assuntos
Discinesias , Doença de Parkinson , Masculino , Humanos , Feminino , Doença de Parkinson/tratamento farmacológico , Levodopa/uso terapêutico , Carbidopa/efeitos adversos , Antiparkinsonianos/uso terapêutico , Infusões Subcutâneas , Discinesias/tratamento farmacológico , Método Duplo-Cego , Resultado do Tratamento
14.
Neuropharmacology ; 251: 109926, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554815

RESUMO

We tested the efficacy of 4'-fluorocannabidiol (4'-F-CBD), a semisynthetic cannabidiol derivative, and HU-910, a cannabinoid receptor 2 (CB2) agonist in resolving l-DOPA-induced dyskinesia (LID). Specifically, we were interested in studying whether these compounds could restrain striatal inflammatory responses and rescue glutamatergic disturbances characteristic of the dyskinetic state. C57BL/6 mice were rendered hemiparkinsonian by unilateral striatal lesioning with 6-OHDA. Abnormal involuntary movements were then induced by repeated i.p. injections of l-DOPA + benserazide. After LID was installed, the effects of a 3-day treatment with 4'-F-CBD or HU-910 in combination or not with the TRPV1 antagonist capsazepine (CPZ) or CB2 agonists HU-308 and JWH015 were assessed. Immunostaining was conducted to investigate the impacts of 4'-F-CBD and HU-910 (with CPZ) on inflammation and glutamatergic synapses. Our results showed that the combination of 4'-F-CBD + CPZ, but not when administered alone, decreased LID. Neither HU-910 alone nor HU-910+CPZ were effective. The CB2 agonists HU-308 and JWH015 were also ineffective in decreasing LID. Both combination treatments efficiently reduced microglial and astrocyte activation in the dorsal striatum of dyskinetic mice. However, only 4'-F-CBD + CPZ normalized the density of glutamate vesicular transporter-1 (vGluT1) puncta colocalized with the postsynaptic density marker PSD95. These findings suggest that 4'-F-CBD + CPZ normalizes dysregulated cortico-striatal glutamatergic inputs, which could be involved in their anti-dyskinetic effects. Although it is not possible to rule out the involvement of anti-inflammatory mechanisms, the decrease in striatal neuroinflammation markers by 4'-F-CBD and HU-910 without an associated reduction in LID indicates that they are insufficient per se to prevent LID manifestations.


Assuntos
Compostos Bicíclicos com Pontes , Canabidiol/análogos & derivados , Canabinoides , Capsaicina/análogos & derivados , Discinesia Induzida por Medicamentos , Levodopa , Ratos , Camundongos , Animais , Levodopa/uso terapêutico , Antiparkinsonianos/farmacologia , Ratos Sprague-Dawley , Discinesia Induzida por Medicamentos/tratamento farmacológico , Camundongos Endogâmicos C57BL , Corpo Estriado , Oxidopamina/farmacologia , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças
15.
Indian J Pharmacol ; 56(1): 37-41, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454587

RESUMO

JOURNAL/ijpha/04.03/01363791-202456010-00007/figure1/v/2024-03-07T095025Z/r/image-tiff Parkinson's disease (PD) is the most common neurodegenerative disease caused by the steady depletion of dopamine in the striatum due to the loss of dopaminergic neurons. Most of the current therapeutics work on rebuilding the striatal dopamine level through oral administration of levodopa which stops the symptoms of PD. But there is a long-term motor complication with these dopamine precursors. Moreover, no preventive treatment is available for PD. Thus, before finding a therapeutic treatment for PD, it is necessary to first understand the basic cause of PD. Moreover, alpha-synuclein oligomerization can be the major factor in PD. From the UniProt database, protein information was extracted, and the model was designed by homology modeling technique and validated by the model validation server. Hence, the designed model has 96.5% most favored region and 0% disallowed region. Therefore, the model is stable based on RC plot parameters.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/uso terapêutico , Dopamina/metabolismo , Levodopa , Modelos Animais de Doenças
16.
Drug Dev Ind Pharm ; 50(4): 331-340, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456721

RESUMO

OBJECTIVE: This study aimed to optimize the formulation of carbidopa/levodopa orally disintegrating tablets (ODTs) in order to improve their disintegration performance, and facilitate easier medication intake for Parkinson's patients. METHOD: The response surface methodology (RSM) was used to optimize the formulation, with the content of cross-linked polyvinylpyrrolidone (PVPP), microcrystalline cellulose (MCC), and mannitol (MNT) as independent variables, and disintegration time as the response parameter. Python was utilized to model Carr Indices and mixing time to determine the suitable mixing time. Direct compression (DC) was used for the preparation of ODTs. RESULT: The optimization process resulted in the following values for the independent variables: 7.04% PVPP, 22.02% MCC, and 16.21% MNT. By optimizing the mixing time using Python, it was reduced to 14.19 min. The ODTs prepared using the optimized formulation and a mixing time of 14.19 min exhibited disintegration times of 16.74 s in vitro and 17.63 s in vivo. The content uniformity of levodopa and carbidopa was found to be 100.83% and 99.48%, respectively. CONCLUSION: The ODTs optimized using RSM and Python demonstrated excellent disintegration performance, leading to a decrease in the time the drug exists in solid form in the oral cavity. This improvement in disintegration time reduced the difficulty of swallowing for patients and enhanced medication compliance, while still ensuring that ODTs prepared by DC had sufficient mechanical strength to meet storage and transportation requirements.


Assuntos
Carbidopa , Levodopa , Povidona/análogos & derivados , Humanos , Solubilidade , Administração Oral , Manitol , Comprimidos/química , Composição de Medicamentos/métodos
17.
Cell Signal ; 118: 111125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38432574

RESUMO

BACKGROUND: Parkinson's disease patients on chronic levodopa often suffer from motor complications, which tend to reduce their quality of life. Levodopa-induced dyskinesia (LID) is one of the most prevalent motor complications, often characterized by abnormal involuntary movements, and the pathogenesis of LID is still unclear but recent studies have suggested the involvement of autophagy. METHODS: The onset of LID was mimicked by chronic levodopa treatment in a unilateral 6-hydroxydopamine (6-OHDA) -lesion rat model. Overexpression of ΔFosB in HEK293 cells to mimic the state of ΔFosB accumulation. The modulation of the AMP-activated protein kinase (AMPK)-mediated autophagy pathway using by metformin, AICAR (an AMPK activator), Compound C (an AMPK inhibitor) and chloroquine (an autophagy pathway inhibitor). The severity of LID was assessed by axial, limb, and orofacial (ALO) abnormal involuntary movements (AIMs) score and in vivo electrophysiology. The activity of AMPK pathway as well as autophagy markers and FosB-ΔFosB levels were detected by western blotting. RT-qPCR was performed to detect the transcription level of FosB-ΔFosB. The mechanism of autophagy dysfunction was further explored by immunofluorescence and transmission electron microscopy. RESULTS: In vivo experiments demonstrated that chronic levodopa treatment reduced AMPK phosphorylation, impaired autophagosome-lysosomal fusion and caused FosB-ΔFosB accumulation in the striatum of PD rats. Long-term metformin intervention improved ALO AIMs scores as well as reduced the mean power of high gamma (hγ) oscillations and the proportion of striatal projection neurons unstable in response to dopamine for LID rats. Moreover, the intervention of metformin promoted AMPK phosphorylation, ameliorated the impairment of autophagosome-lysosomal fusion, thus, promoting FosB-ΔFosB degradation to attenuate its accumulation in the striatum of LID rats. However, the aforementioned roles of metformin were reversed by Compound C and chloroquine. The results of in vitro studies demonstrated the ability of metformin and AICAR to attenuate ΔFosB levels by promoting its degradation, while Compound C and chloroquine could block this effect. CONCLUSIONS: In conclusion, our results suggest that long-term metformin treatment could promote ΔFosB degradation and thus attenuate the development of LID through activating the AMPK-mediated autophagy pathway. Overall, our results support the AMPK-mediated autophagy pathway as a novel therapeutic target for LID and also indicate that metformin is a promising therapeutic candidate for LID.


Assuntos
Discinesia Induzida por Medicamentos , Metformina , Humanos , Ratos , Animais , Levodopa/farmacologia , Levodopa/uso terapêutico , Antiparkinsonianos/farmacologia , Proteínas Quinases Ativadas por AMP , Células HEK293 , Qualidade de Vida , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Oxidopamina/uso terapêutico , Autofagia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Metformina/farmacologia , Modelos Animais de Doenças
18.
Biomacromolecules ; 25(4): 2563-2573, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38485470

RESUMO

In the current years, polydopamine nanoparticles (PDA NPs) have been extensively investigated as an eumelanin mimic. However, unlike natural eumelanin, PDA NPs contain no 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-derived units and may be limited in certain intrinsic properties; superior eumelanin-like nanomaterials are still actively being sought. Levodopa (l-DOPA) is a natural eumelanin precursor and expected to convert into DHICA and further remain within the final product through covalent or physical interactions. Herein, poly(levodopa) nanoparticles [P(l-DOPA) NPs] were synthesized with the assistance of zinc oxide as a supplement to synthetic eumelanin. This study found that P(l-DOPA) NPs had ∼90% DHICA-derived subunits on their surface and exhibited superior antioxidant activity compared to PDA NPs due to their looser polymeric microstructure. Benefitting from a stronger ROS scavenging ability, P(l-DOPA) NPs outperformed PDA NPs in treating cellular oxidative stress and acute inflammation. This research opens up new possibilities for the development and application of novel melanin-like materials.


Assuntos
Levodopa , Melaninas , Humanos , Melaninas/química , Antioxidantes , Inflamação/tratamento farmacológico
19.
Clin Auton Res ; 34(1): 117-124, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429568

RESUMO

PURPOSE: We investigated the effect of levodopa on postural blood pressure changes in individuals with Parkinson disease (PD) with (PD+OH) and without neurogenic OH (PD-OH). METHODS: We performed a prospective randomized crossover study with autonomic testing performed ON and OFF levodopa. The primary outcome was the change in systolic blood pressure (SBP) from supine to 70° tilt at 3 min (ΔSBP-3'). Secondary outcomes included indices of baroreflex function and blood pressure and heart rate during tilt. RESULTS: We enrolled 40 individuals with PD (21 PD+OH, 19 PD-OH), mean age (SD) 73.2 years (7.9), 13 women (32.5%)). There was no difference in age, sex, disease duration, and severity between PD+OH and PD-OH. Mean difference in ΔSBP-3' ON versus OFF levodopa in the whole study population was - 3.20 mmHg [- 7.36 to 0.96] (p = 0.14). Mean difference in ΔSBP-3' was - 2.14 mmHg [- 7.55 to 3.28] (p = 0.45) in PD+OH and - 5.14 mmHg [- 11.63 to 1.35] (p = 0.14) in PD-OH. Mean difference in ΔSBP ON versus OFF levodopa was greater at 7 and 10 min (- 7.52 mmHg [- 11.89 to - 3.15], p = 0.002, and - 7.82 mmHg [- 14.02 to - 1.67], p = 0.02 respectively). Levodopa was associated with lower absolute values of blood pressure in both PD+OH and PD-OH and cardiovascular noradrenergic baroreflex impairment. CONCLUSION: Levodopa decreases blood pressure in both PD with and without autonomic failure, but it does not cause a greater fall in blood pressure from supine to standing at 3 min. Levodopa-induced baroreflex sympathetic noradrenergic impairment may contribute to lower blood pressure. Lower standing blood pressure with levodopa may increase the risks of fall and syncope.


Assuntos
Hipotensão Ortostática , Doença de Parkinson , Humanos , Feminino , Idoso , Levodopa/farmacologia , Levodopa/uso terapêutico , Doença de Parkinson/complicações , Pressão Sanguínea/fisiologia , Estudos Cross-Over , Hipotensão Ortostática/complicações , Estudos Prospectivos , Norepinefrina
20.
Nat Commun ; 15(1): 2699, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538636

RESUMO

Even after successful extinction, conditioned fear can return. Strengthening the consolidation of the fear-inhibitory safety memory formed during extinction is one way to counteract return of fear. In a previous study, we found that post-extinction L-DOPA administration improved extinction memory retrieval 24 h later. Furthermore, spontaneous post-extinction reactivations of a neural activation pattern evoked in the ventromedial prefrontal cortex (vmPFC) during extinction predicted extinction memory retrieval, L-DOPA increased the number of these reactivations, and this mediated the effect of L-DOPA on extinction memory retrieval. Here, we conducted a preregistered replication study of this work in healthy male participants. We confirm that spontaneous post-extinction vmPFC reactivations predict extinction memory retrieval. This predictive effect, however, was only observed 90 min after extinction, and was not statistically significant at 45 min as in the discovery study. In contrast to our previous study, we find no evidence that L-DOPA administration significantly enhances retrieval and that this is mediated by enhancement of the number of vmPFC reactivations. However, additional non-preregistered analyses reveal a beneficial effect of L-DOPA on extinction retrieval when controlling for the trait-like stable baseline levels of salivary alpha-amylase enzymatic activity. Further, trait salivary alpha-amylase negatively predicts retrieval, and this effect is reduced by L-DOPA treatment. Importantly, the latter findings result from non-preregistered analyses and thus further investigation is needed.


Assuntos
Dopamina , alfa-Amilases Salivares , Humanos , Masculino , Dopamina/farmacologia , Levodopa/farmacologia , alfa-Amilases Salivares/farmacologia , Extinção Psicológica/fisiologia , Memória , Córtex Pré-Frontal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...